InternetIntelligenz 2.0

kostenlos Pressemitteilungen einstellen | veröffentlichen | verteilen

Pressemitteilungen

 

Data-Science-Projekt an der Hochschule Pforzheim: Studenten analysieren Maschinendaten bei Asseco-Kunde

ID: 1760726

Grundlage für KI-basierte Anomalieerkennung geschaffen


(IINews) - Karlsruhe, 10.10.2019 - Welche Konstellationen von Maschinendaten sind für Störungen und Ausfälle einer Anlage typisch? Und wie lassen sich mit diesem Wissen zukünftige Probleme vorhersagen? Fragen, mit denen sich normalerweise Big-Data- und KI-Experten im Kontext der vorausschauenden Wartung ("Predictive Maintenance") beschäftigen. Im Rahmen eines Praxisprojekts am FutureLAB der Hochschule Pforzheim standen diese Überlegungen im vergangenen Sommersemester auch auf dem Stundenplan einiger Studenten des Bachelor-Studiengangs Wirtschaftsinformatik, Management und IT. In Zusammenarbeit mit dem ERP-Spezialisten Asseco Solutions untersuchten sie die Datensätze eines Asseco-Kunden aus der Aluminiumdruckguss-Branche und identifizierten typische Datenkonstellationen für Maschinenstörungen und Ausschuss. Die Ergebnisse des Data-Science-Projekts wurden Mitte Juli präsentiert und bilden nun die Basis für die Entwicklung eines KI-basierten Systems zur präventiven Anomalieerkennung.



Eine gute KI-Analyse erfordert einen umfassenden Datenbestand. Dabei lässt sich jedoch selbst das größte Big-Data-Reservoir nicht unmittelbar nutzen, wenn seine Daten ohne Kontext erfasst wurden. Zu dieser Erkenntnis war auch der Aludruckguss-Spezialist gelangt, der seine Maschinendaten für das Hochschulprojekt zur Verfügung stellte. Schon heute werden dort für jeden einzelnen Aluminiumguss ("Schuss") bis zu 600 Parameter wie Temperatur, Formfüllzeit oder Dicke des Pressrests erfasst. Eine Zuordnung der Daten zu konkreten Störungen oder fehlerbehafteten Schüssen erfolgte jedoch bislang nicht. Entsprechend konnte der vorhandene Datenpool nicht unmittelbar zur Analyse oder Fehlervermeidung genutzt werden.



Studenten identifizieren fehlertypische Parameterkonstellationen



Im Zentrum des Data-Science-Projekts, das von Prof. Dr. Joachim Schuler sowie Prof. Dr. Thomas Schuster von der Hochschule Pforzheim initiiert worden war, stand das Ziel, den vorhandenen Datenbestand auszuwerten und so aufzubereiten, dass nutzbare Erkenntnisse daraus abgeleitet werden können. Dazu analysierte eine Gruppe von neun Studenten die Betriebsdaten zweier Aludruckgussmaschinen und entwickelte eine Methodik, dokumentierte Fehler wie Lufteinschlüsse, unvollständige Ausfüllung der Gussform oder ungenügendes Aushärten des Aluminiums mit den zugehörigen Schussparametern zu synchronisieren. Auf diese Weise konnten für die knapp 30 Fehlertypen charakteristische Parameterkonstellationen identifiziert und entsprechend zugeordnet werden.







Die Ergebnisse der Analyse wurden Mitte Juli im Rahmen der Abschlusspräsentation an der Hochschule vorgestellt. Die dabei gewonnenen Erkenntnisse fließen unmittelbar in Praxisabläufe des Aludruckguss-Spezialisten zurück: So zeigte sich unter anderem, dass mehr als der Hälfte der Fehler lediglich eine falsche Konfiguration der Maschine zugrunde lag - eine Fehlerquelle, die sich mit verhältnismäßig geringem Aufwand reduzieren lässt.



Grundlage für KI-Analyse geschaffen



Gleichzeitig haben die Studenten mit ihrer Analyse die Grundlage für die Realisierung eines geplanten KI-Systems zur Anomalieerkennung geschaffen. So nutzen die KI-Experten der Asseco Solutions die identifizierten Parameterkonstellationen aktuell als Trainingsdaten für ein neuronales KI-Netz, das in die Lage versetzt werden soll, analog zu den bekannten Mustern weitere, bislang unbekannte kritische Parameterkonstellationen zu entdecken. Indem künftig überwacht wird, ob sich Parameter ungewöhnlich entwickeln und einem kritischen Fehlermuster annähern, soll es möglich werden, sowohl Stillstände als auch Ausschussware vorherzusagen und deutlich zu reduzieren.



"Die Zahl der KI-Projekte in der Industrie wird in den kommenden Jahren rapide ansteigen - und damit auch der Bedarf an qualifiziertem Fachpersonal", so Steve Roth, Head of Operations bei der Asseco Solutions, und Leiter des Data-Science-Projekts. "Damit sich der bestehende Fachkräftemangel nicht noch weiter verschärft, ist eine frühzeitige Nachwuchsförderung unerlässlich. Durch das gemeinsame Projekt mit den Studenten der Hochschule Pforzheim wollten wir einen Beitrag dazu leisten. Für die meisten von ihnen war dies ihr erster Kontakt mit der freien Wirtschaft - und nichtsdestotrotz haben sie sich sehr professionell an die Aufgabenstellung angenähert. Sie etablierten innerhalb kürzester Zeit unterschiedlichste Spezialisierungen in ihrem Team: Ein Student koordinierte das Vorgehen wie ein Projektleiter, andere fokussierten sich auf die Auswertung oder darauf, die Daten mit den Fehlern in Beziehung zu setzen. Das hat uns im Rahmen der Zusammenarbeit sehr beeindruckt. Sobald die weiteren Schritte des Projekts abgeschlossen sind und die Anomalieerkennung tatsächlich produktiv im Unternehmen läuft, wollen wir die Studenten nochmals zu unserem Kunden einladen, um ihnen zu zeigen, wie die Ergebnisse ihrer Arbeit konkret in der Praxis genutzt werden."



Über die Kooperation



Bereits seit 2016 arbeiten das FutureLAB der Hochschule Pforzheim und die Asseco Solutions eng im Bereich der Lehre zusammen. So vermittelten die Asseco-Experten den Studierenden in den vergangenen Semestern im Rahmen mehrerer Vorlesungsreihen unter anderem die Grundlagen für die Einführung und Funktionsweise von ERP-Lösungen in der Praxis. Mit dem Data-Science-Projekt wurde die Zusammenarbeit nun auf die Praxis ausgeweitet. Durch das Projekt erhielten die Studenten die Möglichkeit, die Theorie konkret anzuwenden und zu Zukunftsthemen wie Industrie 4.0 und IoT erste praktische Erfahrungen zu sammeln.



Diese Pressemitteilung ist unter www.applus-erp.de und www.phronesis.de abrufbar.


Themen in diesem Fachartikel:


Unternehmensinformation / Kurzprofil:

Asseco Solutions
Seit mehr als 25 Jahren bietet die Asseco Solutions mit Hauptsitz in Karlsruhe modernste ERP-Technologien für den gehobenen Mittelstand. Ihre webbasierte ERPII-Lösung APplus verbindet CRM, DMS, PLM, E-Business, Wissensorganisation, Risikomanagement und Workflow mit klassischem ERP und deckt so alle wesentlichen Stufen moderner Wertschöpfungsketten integriert ab. Derzeit setzen mehr als 1.750 Kunden auf APplus. Mit zahlreichen akademischen Kooperationen legt Asseco einen starken Fokus auf Forschung und Entwicklung und agiert so als einer der Vorreiter für Digitalisierung und zukunftsweisende Technologien wie Industrie 4.0. Für eine bestmögliche Betreuung seiner Kunden beschäftigt das Unternehmen insgesamt über 800 Mitarbeiter an knapp 20 Standorten in Deutschland, Österreich, der Schweiz, der Slowakei und Tschechien sowie Italien und Guatemala. Als Teil der europaweiten Asseco-Gruppe mit über 24.000 Mitarbeitern bietet Asseco seinen Kunden eine ideale Kombination aus lokalem Fokus und globaler Handlungsfähigkeit.



Leseranfragen:



PresseKontakt / Agentur:

phronesis PR GmbH
Marcus Ehrenwirth
Kobelweg 12 1/4
86156 Augsburg
info(at)phronesis.de
0821 444 800
http://www.phronesis.de



drucken  als PDF  an Freund senden  Passiv 3D-Stereo Produktfamilie bekommt Zuwachs
Mittelstand im Fokus: dynabook baut Partnernetzwerk aus
Bereitgestellt von Benutzer: Adenion
Datum: 10.10.2019 - 10:15 Uhr
Sprache: Deutsch
News-ID 1760726
Anzahl Zeichen: 0

Kontakt-Informationen:
Ansprechpartner: Stephanie Miotto
Stadt:

Karlsruhe


Telefon: 0721/91432-0

Kategorie:

IT, New Media & Software


Anmerkungen:


Dieser Fachartikel wurde bisher 90 mal aufgerufen.


Der Fachartikel mit dem Titel:
"Data-Science-Projekt an der Hochschule Pforzheim: Studenten analysieren Maschinendaten bei Asseco-Kunde
"
steht unter der journalistisch-redaktionellen Verantwortung von

Asseco Solutions (Nachricht senden)

Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).


Alle Meldungen von Asseco Solutions



 

Wer ist Online

Alle Mitglieder: 50.252
Registriert Heute: 0
Registriert Gestern: 0
Mitglied(er) online: 0
Gäste Online: 344


Bitte registrieren Sie sich hier. Als angemeldeter Benutzer nutzen Sie den vollen Funktionsumfang dieser Seite.