Licht auf der Nanoskala schalten - Bayreuther Physiker verwenden Nanostäbchen als schaltbare Nano-Ampeln
Mit einem an der Uni Bayreuth entwickelten Verfahren lassen sich Lichtquellen auf der Nanoskala gezielt ein- und ausschalten.
(IINews) - Metallische Nanopartikel, die nur wenige Millionstel Millimeter lang sind, können als Basis für Lichtquellen genutzt werden, die sich ähnlich wie die Lichter von Ampeln im Straßenverkehr präzise steuern lassen. Dies hat ein Forschungsteam um Prof. Dr. Markus Lippitz, Experimentalphysiker an der Universität Bayreuth, herausgefunden. Das hier entwickelte Verfahren macht es erstmals möglich, Lichtquellen auf der Nanoskala gezielt ein- und auszuschalten. In der Fachzeitschrift "Nature Communications" wurden diese wegweisenden Forschungsergebnisse kürzlich vorgestellt.
Nanostäbchen aus Gold mit steuerbaren Lichtquellen
In einer Serie von Experimenten haben die Bayreuther Forscher Nanostäbchen aus Gold untersucht. Jedes dieser Stäbchen wurde in seiner vollen Länge wiederholt einer sehr kurzen, aber intensiven Bestrahlung durch Laserlicht ausgesetzt. Die dadurch angeregten Partikel reflektieren dieses Licht - aber so, dass das abgestrahlte Licht nicht überall die gleichen Wellenlängen wie der einfallende Laserstrahl hat. Wird nämlich ein Nanostäbchen beispielsweise durch rotes Laserlicht angeregt, so strahlt es nicht nur rotes Licht, sondern auch energiereicheres blaues Licht ab. Die Bayreuther Physiker Daniela Wolf und Dr. Thorsten Schumacher konnten zeigen, dass das blaue Licht - im Unterschied zum energieärmeren roten Licht - nicht gleichmäßig vom gesamten untersuchten Nanostäbchen abgestrahlt wird. Es leuchtet vielmehr nur an wenigen und sehr kleinen Stellen des Partikels.
Um diese punktförmigen Emissionszentren zu beobachten, kombinierten die Wissenschaftler ein leistungsstarkes Mikroskop mit einem speziellen Abbildungsverfahren. So fanden sie heraus, dass die Anzahl und die Positionen der Emissionszentren variieren. Sie richten sich nach der Wellenlänge des Laserlichts, mit dem ein Nanostäbchen bestrahlt wird. Je nach Wellenlänge wird blaues Licht beispielsweise nur an einer einzigen Stelle in der Mitte des Stäbchens oder nur an dessen beiden Enden abgestrahlt. Diese winzigen Lichtquellen können gezielt ein- und ausgeschaltet werden, denn die Wellenlänge des Laserlichts lässt sich mit hoher Genauigkeit steuern. Die Nanostäbchen aus Gold werden so zu kleinen schaltbaren "Nano-Ampeln".
Anwendungsperspektiven: Von der Datenübertragung bis zum Ausmessen elektronischer Zustände
Prof. Dr. Markus Lippitz, einer der führenden Experten in Deutschland auf dem Gebiet der Nanooptik, sieht in diesen Ergebnissen ein großes Anwendungspotenzial: "Dies ist das erste Mal, dass wir eine Lichtquelle auf der Nanoskala so exakt steuern können." Eine mögliche Anwendung einer solchen Nanoampel ist die gezielte Übertragung von Daten mit Licht. Analog zu Mobilfunk- oder Radiosignalen, die mithilfe von Antennen gesendet und empfangen werden, erscheint es jetzt grundsätzlich möglich, Lichtsignale mit der Nanoampel zu übermitteln. Dieses Konzept könnte in Zukunft helfen, elektronische Schaltungen auf Computerplatinen durch schnellere optische Schaltungen zu ersetzen.
Das neue Verfahren, Lichtsignale auf der Nanoskala zu steuern und zu beobachten, ist zudem hervorragend geeignet, die Forschungsarbeiten im Bayreuther DFG-Graduiertenkolleg "Fotophysik synthetischer und biologischer multichromophorer Systeme" (GRK 1640) zu unterstützen, das kürzlich um weitere vier Jahre verlängert wurde. Es befasst sich insbesondere mit Photosynthese-Prozessen in der Natur. Das Ziel ist es, die auf der molekularen Skala ablaufende Übertragung von Lichtenergie und deren Umwandlung in chemische Energie genauer zu verstehen und die so gewonnenen Erkenntnisse für neue Energietechnologien zu nutzen. Die neuen Nanoampeln könnten eingesetzt werden, um elektronische Zustände in Pflanzen und anderen komplexen Systemen auszumessen. Darüber hinaus bieten sie aufgrund ihrer Schaltbarkeit die Möglichkeit, gezielt bestimmte elektronische Zustände zu erzeugen.
Zum Bayreuther Forschungsteam
Die Mitglieder des Bayreuther Forschungsteams, die in "Nature Communications" über ihre Forschungsergebnisse berichten, haben zuvor schon an der Universität Stuttgart und am Max-Planck-Institut für Festkörperforschung in Stuttgart zusammengearbeitet. Sie sind im Frühjahr 2014 zusammen an die Universität Bayreuth gekommen. Daniela Wolf ist Doktorandin im oben genannten DFG- Graduiertenkolleg, das als interdisziplinäres Promotionsprogramm der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) zugeordnet ist. Thorsten Schumacher hat seine Promotion bereits 2014 mit Auszeichnung abgeschlossen. Seine Arbeit wurde mit dem Emil-Warburg-Forschungspreis ausgezeichnet. Prof. Markus Lippitz leitet an der Universität Bayreuth den Lehrstuhl für Experimentalphysik III seit Februar 2013.
Veröffentlichung:
D. Wolf, T. Schumacher and M. Lippitz,
Shaping the nonlinear near field,
in: Nature Communications, 2016 Jan 14; 7:10361.
DOI: 10.1038/ncomms10361.
Kontakt:
Prof. Dr. Markus Lippitz
Experimentalphysik III
Universität Bayreuth
95447 Bayreuth
Tel.: +49 (0) 921 55 3800
Email: markus.lippitz(at)uni-bayreuth.de
Themen in diesem Fachartikel:
uni-bayreuth
emil
warburg
forschungspreis
prof-markus-lippitz
daniela-wolf
laser
nanooptik
nanoskala
datenuebertragung
lichtenergie
thorsten-schumacher
festkoerperforschung
Unternehmensinformation / Kurzprofil:
Kurzporträt der Universität Bayreuth
Die Universität Bayreuth ist eine junge, forschungsorientierte Campus-Universität. Gründungsauftrag der 1975 eröffneten Universität ist die Förderung von interdisziplinärer Forschung und Lehre sowie die Entwicklung von Profil bildenden und Fächer übergreifenden Schwerpunkten. Die Forschungsprogramme und Studienangebote decken die Natur- und Ingenieurwissenschaften, die Rechts- und Wirtschaftswissenschaften sowie die Sprach-, Literatur und Kulturwissenschaften ab und werden beständig weiterentwickelt.
Gute Betreuungsverhältnisse, hohe Leistungsstandards, Fächer übergreifende Kooperationen und wissenschaftliche Exzellenz führen regelmäßig zu Spitzenplatzierungen in Rankings. Die Universität Bayreuth belegt 2014 im weltweiten Times Higher Education (THE)-Ranking ?100 under 50'' als eine von insgesamt sechs vertretenen deutschen Hochschulen eine Top-Platzierung.
Seit Jahren nehmen die Afrikastudien der Universität Bayreuth eine internationale Spitzenposition ein; die Bayreuther Internationale Graduiertenschule für Afrikastudien (BIGSAS) ist Teil der Exzellenzinitiative des Bundes und der Länder. Die Hochdruck- und Hochtemperaturforschung innerhalb des Bayerischen Geoinstituts genießt ebenfalls ein weltweit hohes Renommee. Die Polymerforschung ist Spitzenreiter im Förderranking der Deutschen Forschungsgemeinschaft (DFG). Die Universität Bayreuth verfügt über ein dichtes Netz strategisch ausgewählter, internationaler Hochschulpartnerschaften.
Derzeit sind an der Universität Bayreuth rund 13.000 Studierende in 135 verschiedenen Studiengängen an sechs Fakultäten immatrikuliert. Mit ca. 1.200 wissenschaftlichen Beschäftigten, davon 224 Professorinnen und Professoren, und rund 900 nichtwissenschaftlichen Mitarbeiterinnen und Mitarbeitern ist die Universität Bayreuth der größte Arbeitgeber der Region.
Weissdornweg 24, 85757 Karlsfeld
Datum: 29.01.2016 - 10:40 Uhr
Sprache: Deutsch
News-ID 1314598
Anzahl Zeichen: 0
Kontakt-Informationen:
Ansprechpartner: Joachim Lepple
Stadt:
Bayreuth
Telefon: +49 (o) 8131 505010
Kategorie:
Forschung & Entwicklung
Anmerkungen:
Dieser Fachartikel wurde bisher 84 mal aufgerufen.
Der Fachartikel mit dem Titel:
"Licht auf der Nanoskala schalten - Bayreuther Physiker verwenden Nanostäbchen als schaltbare Nano-Ampeln
"
steht unter der journalistisch-redaktionellen Verantwortung von
Universität Bayreuth Forschung (Nachricht senden)
Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).